Search Books and Solutions Manual

Hire My Expertise

if you need help regarding semester projects, assessment/assignment related to web development(php, html, css, javascript, ajax,) or java, c, c++, c#, asp.net, ror, scala or pythn then please hire my expertise. i am professionally software developer. working as a Android & Web Developer. i'll provide my best to fulfil task in time.If you need new website or app or require any kind of digital resource, Please feel free to get in touch without wasting any single minute. I would love to work with you. Please send your requirement. i'll come back to you in time.

For more information, feel free to contact: muhammadmustafa1@hotmail.com

Free Books and Solutions Manual Headline

Monday 23 May 2011

Reinforcement Learning: An Introduction

Link To Content
  Our goal in writing this book was to provide a clear and simple account of the key ideas and algorithms of reinforcement learning. We wanted our treatment to be accessible to readers in all of the related disciplines, but we could not cover all of these perspectives in detail. Our treatment takes almost exclusively the point of view of artificial intelligence and engineering, leaving coverage of connections to psychology, neuroscience, and other fields to others or to another time. We also chose not to produce a rigorous formal treatment of reinforcement learning. We did not reach for the highest possible level of mathematical abstraction and did not rely on a theorem-proof format. We tried to choose a level of mathematical detail that points the mathematically inclined in the right directions without distracting from the simplicity and potential generality of the underlying ideas. 

The book consists of three parts. Part I is introductory and problem oriented. We focus on the simplest aspects of reinforcement learning and on its main distinguishing features. One full chapter is devoted to introducing the reinforcement learning problem whose solution we explore in the rest of the book. Part II presents what we see as the three most important elementary solution methods: dynamic programming, simple Monte Carlo methods, and temporal-difference learning. The first of these is a planning method and assumes explicit knowledge of all aspects of a problem, whereas the other two are learning methods. Part III is concerned with generalizing these methods and blending them. Eligibility traces allow unification of Monte Carlo and temporal-difference methods, and function approximation methods such as artificial neural networks extend all the methods so that they can be applied to much larger problems. We bring planning and learning methods together again and relate them to heuristic search. Finally, we summarize our view of the state of reinforcement learning research and briefly present case studies, including some of the most impressive applications of reinforcement learning to date.